

In this chapter you will learn about: § Internal structure of processor § Memory structure § Determining the speed of a processor § Different types of processors available § Determining the capacity of a memory § Different types of memory available § Several other terms related to the processor and main memory of a computer system Ref Page 101 Chapter 7: Processor and Memory Slide 2/27

Control Unit (CU)

- § One of the two basic components of CPU
- § Acts as the central nervous system of a computer system
- § Selects and interprets program instructions, and coordinates execution
- § Has some special purpose registers and a decoder to perform these activities

Ref Page 10'

napter 7: Processor and Memory

Slide 5/27

Computer Fundamentals: Pradeep K. Sinha & Priti Sinha

Arithmetic Logic Unit (ALU)

- § One of the two basic components of CPU.
- § Actual execution of instructions takes place in ALU
- § Has some special purpose registers
- § Has necessary circuitry to carry out all the arithmetic and logic operations included in the CPU instruction set

Ref Page 10:

hapter 7: Processor and Memory

Slide 6/27

Computer Fundamentals: Pradeep K. Sinha & Priti Sinha

Instruction Set

- § CPU has built-in ability to execute a particular set of machine instructions, called its *instruction set*
- § Most CPUs have 200 or more instructions (such as add, subtract, compare, etc.) in their instruction set
- § CPUs made by different manufacturers have different instruction sets
- § Manufacturers tend to group their CPUs into "families" having similar instruction sets
- § New CPU whose instruction set includes instruction set of its predecessor CPU is said to be *backward compatible* with its predecessor

Ref Page 103

hapter 7: Processor and Memory

Slide 7/27

Registers

- § Special memory units, called registers, are used to hold information on a temporary basis as the instructions are interpreted and executed by the CPU
- § Registers are part of the CPU (not main memory) of a computer
- § The length of a register, sometimes called its *word* size, equals the number of bits it can store
- § With all other parameters being the same, a CPU with 32-bit registers can process data twice larger than one with 16-bit registers

Ref Page 10:

hapter 7: Processor and Memory

Slide 8/27

Functions of Commonly Used Registers

Sr. No.	Name of Register	Function
1	Memory Address (MAR)	Holds address of the active memory location
2	Memory Buffer (MBR)	Holds contents of the accessed (read/written) memory word
3	Program Control (PC)	Holds address of the next instruction to be executed
4	Accumulator (A)	Holds data to be operated upon, intermediate results, and the results
5	Instruction (I)	Holds an instruction while it is being executed
6	Input/Output (I/O)	Used to communicate with the I/O devices

Ref Page 10

hapter 7: Processor and Memory

Slide 9/2

Computer Fundamentals: Pradeep K. Sinha & Priti Sinha

Processor Speed

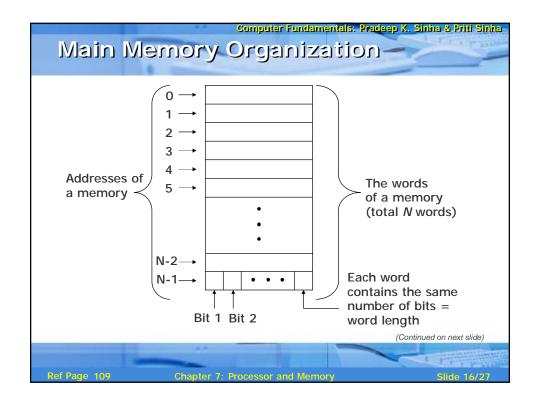
- § Computer has a built-in *system clock* that emits millions of regularly spaced electric pulses per second (known as *clock cycles*)
- § It takes one cycle to perform a basic operation, such as moving a byte of data from one memory location to another
- § Normally, several clock cycles are required to fetch, decode, and execute a single program instruction
- § Hence, shorter the clock cycle, faster the processor
- § Clock speed (number of clock cycles per second) is measured in Megahertz (10⁶ cycles/sec) or Gigahertz (10⁹ cycles/sec)

Ref Page 10!

hapter 7: Processor and Memory

Slide 10/27

Type of Architecture	Features	Usage
CISC (Complex Instruction Set Computer)	 § Large instruction set § Variable-length instructions § Variety of addressing modes § Complex & expensive to produce 	Mostly used in personal computers
RISC (Reduced Instruction Set Computer)	§ Small instruction set § Fixed-length instructions § Reduced references to memory to retrieve operands	Mostly used in workstations


Chapter 7: Processor and Memory

Type of Architecture	Features	Usage
EPIC (Explicitly Parallel Instruction Computing)	§ Allows software to communicate explicitly to the processor when operations are parallel § Uses tighter coupling between the compiler and the processor § Enables compiler to extract maximum parallelism in the original code, and explicitly describe it to the processor	Mostly used in high-end servers and workstations

Type of Architecture	Features	Usage
	§ Processor chip has multiple cooler-running, more energy-efficient processing cores	
Multi-Core Processor	§ Improve overall performance by handling more work in parallel	Mostly used in high-end servers and workstations
	§ can share architectural components, such as memory elements and memory management	and workstations

§ Every computer has a temporary storage built into the computer hardware § It stores instructions and data of a program mainly when the program is being executed by the CPU. § This temporary storage is known as main memory, primary storage, or simply memory. § Physically, it consists of some chips either on the motherboard or on a small circuit board attached to the motherboard of a computer § It has random access property. § It is volatile.

Property	Desirable	Primary storage	Secondary storage
Storage capacity	Large storage capacity	Small	Large
Access Time	Fast access time	Fast	Slow
Cost per bit of storage	Lower cost per bit	High	Low
Volatility	Non-volatile	Volatile	Non-volatile
Access	Random access	Random access	Pseudo- random access or sequential access

Main Memory Organization

(Continued from previous slide..)

- § Machines having smaller word-length are slower in operation than machines having larger word-length
- § A write to a memory location is destructive to its previous contents
- § A read from a memory location is non-destructive to its previous contents

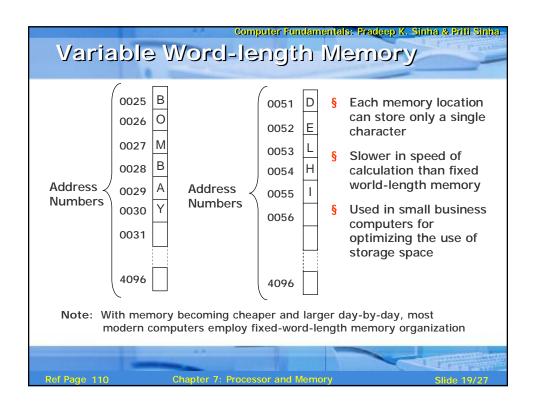
Ref Page 110

hapter 7: Processor and Memory

Slide 17/27

Computer Fundamentals: Pradeep K. Sinha & Priti Sinha Fixed Word-length Memory

Word 0501 В В 0 M Α Υ Н 0502 D Ε L ı Address 0503 **Numbers**


1024

- § Storage space is always allocated in multiples of word-length
- § Faster in speed of calculation than variable word-length memory
- § Normally used in large scientific computers for gaining speed of calculation

Ref Page 110

hapter 7: Processor and Memory

Slide 18/27

S Memory Capacity S Memory capacity of a computer is equal to the number of bytes that can be stored in its primary storage S Its units are: Kilobytes (KB) : 1024 (210) bytes Megabytes (MB) : 1,048,576 (220) bytes Gigabytes (GB) : 1,073,741824 (230) bytes

Random Access Memory (RAM)

- § Primary storage of a computer is often referred to as RAM because of its random access capability
- § RAM chips are volatile memory
- § A computer's motherboard is designed in a manner that the memory capacity can be enhanced by adding more memory chips
- § The additional RAM chips, which plug into special sockets on the motherboard, are known as *single-in-line memory modules (SIMMs)*

Ref Page 112

hapter 7: Processor and Memory

Slide 21/2

Computer Fundamentals: Pradeep K. Sinha & Priti Sinha

Read Only Memory (ROM)

- § ROM a non-volatile memory chip
- § Data stored in a ROM can only be read and used they cannot be changed
- § ROMs are mainly used to store programs and data, which do not change and are frequently used. For example, system boot program

Ref Page 112

Chapter 7: Processor and Memory

Slide 22/27

Туре	Usage
Manufacturer-programmed ROM	Data is burnt by the manufacturer of the electronic equipment in which it is used.
User-programmed ROM or Programmable ROM (PROM)	The user can load and store "read-only" programs and data in it
Erasable PROM (EPROM)	The user can erase information stored in it and the chip can be reprogrammed to store new information

	Types of ROMs	omputer Fundamentals: Pradeep K. Sinha & Priti Sini
	Туре	Usage
	Ultra Violet EPROM (UVEPROM)	A type of EPROM chip in which the stored information is erased by exposing the chip for some time to ultra-violet light
	Electrically EPROM (EEPROM) or Flash memory	A type of EPROM chip in which the stored information is erased by using high voltage electric pulses
Ref Page 113 Chapter 7: Processor and Memory Slide 24/27		

Cache Memory

- § It is commonly used for minimizing the memory-processor speed mismatch.
- § It is an extremely fast, small memory between CPU and main memory whose access time is closer to the processing speed of the CPU.
- § It is used to temporarily store very active data and instructions during processing.

Cache is pronounced as "cash"

Ref Page 11:

napter 7: Processor and Memory

Slide 25/27

Computer Fundamentals: Pradeep K. Sinha & Priti Sinha Key Words/Phrases

- § Accumulator Register (AR)
- § Address
- § Arithmetic Logic Unit (ALU)
- § Branch Instruction
- § Cache Memory
- § Central Processing Unit (CPU)
- § CISC (Complex Instruction Set Computer) architecture
- § Clock cycles
- § Clock speed
- § Control Unit
- § Electrically EPROM (EEPROM)
- § Erasable Programmable Read-Only Memory (EPROM)
- § Explicitly Parallel Instruction Computing (EPIC)
- § Fixed-word-length memory

- § Flash Memory
- § Input/Output Register (I/O)
- § Instruction Register (I)
- § Instruction set
- § Kilobytes (KB)
- § Main Memory
- § Manufacturer-Programmed ROM
- § Megabytes (MB)
- § Memory
- § Memory Address Register (MAR)
- § Memory Buffer Register (MBR)
- § Microprogram
- § Multi-core processor
- § Non-Volatile storage Processor
- § Program Control Register (PC)
- § Programmable Read-Only Memory (PROM)
- § Random Access Memory (RAM)

(Continued on next slide)

Ref Page 114

Chapter 7: Processor and Memory

Slide 26/27

Computer Fundamentals: Pracleep K. Sinha & Priti Sinha Key Words/Phrases (Continued from previous slide...) § Read-Only Memory (ROM) § Register § RISC (Reduced Instruction Set Computer) architecture § Single In-line Memory Module (SIMM) § Ultra Violet EPROM (UVEPROM) § Upward compatible § User-Programmed ROM § Variable-word-length memory § Volatile Storage § Word length § Word size Ref Page 114 Chapter 7: Processor and Memory Slide 27/27